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bstract

In this work, a typical process for natural gas dehydration using triethylene glycol (TEG) as a desiccant is simulated using a steady state
owsheet simulator (Aspen Plus). The flowsheet includes all major units in a typical dehydration facility, that is: absorption column, flash unit,
eat exchangers, regenerator, stripper, and reboiler. The base case operating conditions are taken to resemble field data from one of the existing
EG-dehydration units operating in United Arab Emirates (UAE). Using Aspen Plus, the flowsheet is then used to study the effects of different input
arameters and operating conditions of the absorption column, the stripper and the overall plant, on BTEX emission, volatile organic components
VOCs) emission, TEG losses and water content (dew point) of the dehumidified natural gas. Contactor performance has been found to be most
ensitive to disturbances in operating pressure and wet gas flow rate, whereas flow rate of stripping gas and temperature of inlet solvent have the
ajor impact on the stripper performance. The potential of artificial neural network (ANN) to detect and diagnose process faults in the dehydration

lant has also been explored. ANN successfully detects the disturbance severity levels in the input variables considered for the contactor. In
articular, abnormal levels of BTEX concentrations in the rich solvent (exiting the contactor) are shown to precisely indicate the severity levels

n the input variables. Faults in the stripper–regenerator unit have been perfectly predicted by the ANN for two symptoms (TEG emissions and
TEX emissions in vents) and to a lesser extent for faults in VOCs emissions. The best ANN prediction is obtained for the overall plant where the
NN simulates the imposed disturbances for three severity levels of imposed malfunctions for all symptoms considered.
2007 Elsevier B.V. All rights reserved.
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. Introduction

.1. BTEX and VOCs emissions

Gas dehydration is one of the most prominent unit opera-
ions in the natural gas industry. In this operation water vapor
moisture) is removed from natural gas streams to meet sales
pecifications or other downstream gas processes such as gas liq-
id recovery. In particular, moisture level in natural gas must be

aintained below a certain threshold so as to prevent hydrate for-
ation and minimize corrosion in transmission pipelines [1–4].
he most widely used dehydration processes involve the removal
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quations of state

f water vapor by absorption into a liquid desiccant (e.g., glycol)
n an absorber (also called contactor). To maintain continuity of
he process, the water-laden (rich) solvent must be regenerated
o recover the desiccant in a still column (stripper). The medium
sed to strip water vapor from the rich solvent in the stripper is
sually steam and/or some dry stripping gas like air. The oper-
ting conditions favoring efficient operation of the stripper are
igh temperature and low pressure [3], which are opposite to the
onditions required in the absorber. The flowsheet for a typical
atural gas dehydration facility (the one that has been simulated
ere) is shown in Fig. 1. This flowsheet represents a typical
lycol dehydration unit and resembles many of the dehydra-
ion units in current use (e.g., ADCO dehydration facility in the

nited Arab Emirates). Details of the base-case operating con-
itions in this facility have been presented elsewhere [5]. The
ich desiccant leaving the bottom of the absorber is throttled in
flash tank to a lower pressure before being sent to the strip-
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Fig. 1. Process flowsheet for the s

er/regenerator unit, where the absorbed species are stripped off
he solvent. The major source of air and water pollution in dehy-
ration units is associated with the vent gases from this stripper
4,5].

Unfortunately, in liquid-desiccant–dehydration-processes
ignificant amounts of Benzene, Toluene, Ethyl-benzene, and
ylenes (BTEX) and volatile organic compounds (VOCs),

ntering with the wet gas, are simultaneously absorbed. Upon
egeneration of the liquid desiccant in the stripper–regenerator
ystem, BTEX and VOCs are rejected in the vents [6,7]. Water
ecovered from the rich solvent may also contain significant
mounts of these objectionable materials [8,9]. Because of
he growing stringency of environmental regulations, attention
as been increasingly focused on emissions associated with
lycol dehydration units [10–12]. Currently, the limits placed
y the “Clean Air Amendments” on BTEX emissions are 25
onnes per year (tpy) of total BTEX and no more than 10
py of any individual compound [13]. Control of BTEX and
ther VOCs emissions from gas and oil facilities is becoming,
herefore, one of the largest environmental challenges facing
he natural gas industry today [13]. The two most common
mission control technologies in current use are combustion
sometimes called flaring or incineration) and condensation
14].

Optimization of process parameters, such as glycol cir-
ulation rate, temperature and pressure, can reduce pollutant
missions from glycol dehydration facilities. However, some
ehydrators, even under optimum operating conditions, may
enerate emissions above regulatory limits [5,15,16]. The choice
f desiccant (absorbing solvent) in a certain dehydration plant
rucially affects the resulting pollution problem. Ideally, a sol-

ent that selectively absorbs water but not other hydrocarbons
s required. Absorbing BTEX and other VOCs, besides water,
ill pose a serious environmental problem in a later stage upon

egeneration.

a
c
d
d

ted natural gas dehydration plant.

.2. Fault diagnosis using artificial neural networks (ANNs)

ANNs are extensively interconnected parallel structures com-
osed of consecutive layers of processing elements called
eurons. In a feed-forward network each neuron forms weighted
onnections to all neurons in the subsequent layer. ANNs inter-
ace independent variables through the neurons of an input
ayer and transmit output of dependent variables through the
eurons of an output layer. The number of independent vari-
bles and the number of dependent variables, therefore, dictates
umber of neurons in the input and the output layers, respec-
ively. In between the input and the output layers there is at
east one hidden layer that can have any number of neurons.
he input layer acts as a distribution station by transmitting its

nput to the neurons of the hidden layer. Neurons in the hid-
en and the output layers calculate their inputs by performing
weighted sum of the outputs they receive from the previ-

us layer. Their outputs, on the other hand, are calculated by
ransforming their inputs using a non-linear transfer function.
he most widely used transfer functions are the S-shaped log-
igmoid transfer functions (logsig), the S-shaped tan-sigmoid
ransfer functions (tansig), and the pure linear transfer func-
ion (purelin). The logsig transfer function produces outputs in
he range of 0–1, whereas the tansig function produces output
n the range of −1 to +1. Outputs in any range can be pro-
uced by the purelin transfer function [17–20]. The architecture
f the general ANN with a single hidden layer is shown in
ig. 2.

ANNs are categorized as black-box models that can han-
le multidimensional problems of high degree of nonlinearity
nd inter-dependence. The principle utilized by ANNs is that

system of highly interconnected simple processing elements

an learn complex interrelationships between independent and
ependent variables. ANNs have found many applications in
ifferent fields of chemical engineering [21,18,19].
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Fig. 2. Architecture of a general

Usually, there are four steps involved in ANN modeling: (1)
ssembling the training data of input (independent variables) and
utput (dependent variables), (2) deciding the network architec-
ure, (3) training the network, and (4) simulating the network
esponse to new inputs. The training process is simply an opti-
ization process which aims at finding the set of weight and

iases associated with each layer that will minimize the error
bjective function related to the deviations of the network pre-
ictions from the true response output data of the training set.
ecently, there has been a growing interest in the application
f ANN in fault diagnosis, pattern recognition and adaptive
onlinear control of chemical processes [22–32].

In the first part of this work, a typical natural gas TEG-
ehydration facility is simulated using a flowsheet simulator
Aspen Plus). All major units are included in the flowsheet, that
s: absorption column, flash unit, heat exchangers, regenerator,
tripper, and reboiler. The base case operating conditions are
aken to resemble field data from one of the existing dehydration
nits operating in the United Arab Emirates (UAE). Using Aspen
lus simulator as a modeling tool, the sensitivity of selected
esponses (output variables) in the contactor, the stripper, and the
verall plant towards disturbances in the range of −20% to +20%
n the major input variables in these units are investigated. In a
revious study by one of the authors [16], the performance of nat-
ral gas glycol dehydration was simulated and the capability of
ifferent thermodynamic models in describing the whole process
as explored. It was found that Peng-Robinson cubic equation of

tate with the modified Huron and Vidal (second order approxi-
ation) predictive mixing rules (PR-MHV2) gives conservative

mission rates of BTEX. Therefore, the same model is selected
s the property method in the simulator. This model, in addition
o others, has been summarized elsewhere [16].

In the second part of this work the potential of ANNs to
iagnose process faults in the performance of the contactor, the
tripper, and the overall plant is explored. Process faults consid-
red here cause fluctuations in the plant’s performance but not
ailures or operational hazards that incurs plant shutdown. Fol-
owing a troubleshooting study to investigate the effects of the

umber of hidden layers and the number of neurons involved in
hese hidden layers, a 1-3-1 network, with tansig-purelin trans-
er functions, was found to be the most optimum in terms of the
oot mean squared errors (RMSE) obtained. Moreover, one of the

t
m
c
r

l network with one hidden layer.

raining algorithms in the neural networks toolbox in MATLAB,
hich is based on the regularization principles (i.e., trainbr), has
unique feature of automatically selecting the best architecture
f a neural network for a given input–output data. This algorithm
lso gave the same 1-3-1 structure for the best network.

The data needed in the ANN training phase are generated
y Aspen Plus simulator, which has been verified previously
o give reliable simulation of the plant under consideration
16]. The input has been normalized to the range of −1 to +1.
he backpropagation training algorithms used here fall in two
ategories: (1) training algorithms based on the quasi-Newton
secant) method, which, in minimizing the error objective func-
ion, track the steepest descent direction but do not require
alculations of the Hessian matrix, and (2) training algorithms
ased on the conjugate gradient principles, which, in their search
or the minimum, follows a path in the direction of conjugate gra-
ient. Of the first kind, the Broyden-Fletcher-Goldfarb-Shanno
lgorithm (trainbfg), and the one-step-secant algorithm (train-
ss) have been utilized. Of the second type, the Powell-Beale
lgorithm (traincgb) is used. All algorithms were used as pro-
rammed in the neural network toolbox of Matlab 6.0. Some
ther algorithms, like those based on the regularization prin-
iples, have been tried but found to be more sensitive towards
he initial guesses of the network weights, which are generated
utomatically by MATLAB (i.e., higher standard deviations than
hose appearing in Table 3).

. Results and discussions

The base case operating conditions in the different units, and
he composition of the inlet wet gas, which are used in the current
imulation have been presented elsewhere [16] and reproduced
ere in Table 1 for convenience. These conditions resemble one
f the onshore oil and gas-processing facilities in the United
rab Emirates (UAE), which is operated by Abu Dhabi Com-
any for Onshore Oil Operations (ADCO) [5]. These conditions
re based on field sampling tests that are slightly different from
eld sampling presented before [5]. The flowsheet representing
his process is reproduced in Fig. 1. As shown in this figure, all
ajor units are taken into consideration, that is: the absorption

olumn, flash unit, heat exchangers, stripper, regenerator, and
eboiler.
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Table 1
Summary of operating conditions of the base case employed in the simulation

Stream or unit Operating conditions

(1) Wet gas Temperature = 136.4 ◦F, pressure = 618 psia, volume flow = 11 MMSCFD, mass flow = 31915 lb/h

(2) Lean TEG Temperature = 148 ◦F, pressure = 618 psia, purity = 0.998, circulation rate = 9.25 gpm

(3) Stripping gas 80% of the flash tank vent

(4) Absorber Number of ideal stages = 3, pressure = 618 psia, simulator input: no reboiler (QN = 0), no
condenser (Q1 = 0)

(5) Flash tank Temperature = 100 ◦F, pressure = 58 psia

(6) Stripper Number of ideal stages = 5, pressure = 14.7 psia, simulator input: no reboiler (QN = 0), no
condenser (Q1 = 0)
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7) Regenerator Number of ideal stages =
controlled to give lean so

.1. Sensitivity analysis

In this part Aspen Plus simulator is used for the investiga-
ion of the sensitivity of selected responses (output variables) in
he contactor, the stripper, and the overall plant towards dis-
urbances (in the range of −20% to +20% of the base case
alues) in the major input variables of these units. In a previous
ork [5,16], the reliability of the results obtained from Aspen
lus and HYSYS flowsheet simulators in describing the steady
tate behavior of the TEG dehydration plant considered in this
tudy has been established. The input variables and the response
ariables selected are displayed in Table 2. For every level of sen-
itivity studied, the simulator is run with the input variable under
tudy disturbed by the required level keeping all other variables

t their base conditions. Results thus obtained, converted to per-
entages of the values that would have been obtained from the
ndisturbed base case, are displayed in Figs. 3–5. The consis-
ency of the sensitivity study is evident in each of these figures,

able 2
nput and output variables used in the sensitivity analysis study for the contactor,
he stripper, and the overall plant

ndependent (input) variables Dependent (output, response) variables

ontactor
Lean solvent circulation

rate
Water contents in dried gas

Lean solvent purity (mass
fraction)

TEG losses in dried gas

Lean solvent temperature BTEX absorbed in rich solvent
Wet gas flow rate
Water contents in wet gas
Contactor pressure

tripper–regenerator
Reboiler duty TEG losses in stripper’s vent
Temperature of rich

incoming solvent
BTEX emitted in stripper’s vent

Flow rate of stripping gas VOCs emitted in stripper’s vent

verall plants
Lean solvent circulation

rate
TEG losses in stripper’s vent

Lean solvent temperature BTEX emitted in stripper’s vent
Contactor pressure VOCs emitted in stripper’s vent
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ssure = 1.7 psia, simulator input: no condenser (Q1 = 0), heat duty
temperature of 400 ◦F (field value is 0.6 MMBtu/h)

here plots for the different input variables pass through the
ame zero%-disturbance point (i.e., all pass through the base
ase point).

The effects of disturbances in the six input variables selected
or the contactor (Table 2) on the amount of water content and
he desiccant losses in the dry gas are presented in Fig. 3A
nd B, respectively. Water contents in the processed dry gas
s most sensitive to the wet gas flow rate, where it is seen that
n going from 80% to 120% of the base case flow rate, which
s 11 MMSCFD [16], water contents increases from 72% to
30%. Lean solvent circulation rate and the amount of water
n the inlet wet gas affect water contents in the dried gas to a
esser extent (Fig. 3A). However, it is well known that solvent
irculation rate has a sizeable effect on the water content in the
ried gas. It is quite possible that the circulation rate employed
n the simulator (and the actual plant) is very much larger than
he required solvent rate. This can render the water content in
he processed dry gas insensitive to the imposed levels of dis-
urbances in the circulation rate. The other three input variables
ffect water contents marginally. As to desiccant losses, only
ontactor pressure has a sound effect (Fig. 3B); TEG losses
onotonically increases from 62% to 160% when contactor

ressure sweeps an ascending change from 80% to 120% of the
ase case value, which is 618 psia. Increasing contactor pres-
ure, while holding fixed volumetric flow rate and temperature,
s equivalent to increasing mass or molar flow rate of the gas.
or the same contactor, in turn, this means higher superficial
elocity of the ascending gas in the contactor resulting in higher
arry over of the solvent. Lean solvent circulation rate and water
ontents of the inlet gas have almost no effect on solvent losses.
he other three input variables have marginal effects on TEG

osses.
The effects of the three input variables of the

tripper–regenerator unit on both BTEX and VOCs emis-
ions are displayed in Fig. 4A and B, respectively. Reboiler
eat duty and flow rate of the stripping gas are shown to be only
lightly affecting BTEX emissions (Fig. 4A). For example,

TEX emission remains in the range of 93–105% when both
f these input variables increased from 80% to 120% of their
ase case values. The temperature of the inlet rich solvent,
owever, drastically affects BTEX emission, where it is seen
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Fig. 3. Sensitivity of water contents (A) and solvent losses (B) in the dry gas towards disturbances in different input parameters of the contactor.

Fig. 4. Sensitivity of BTEX (A) and VOCs emissions (B) towards disturbances in different input parameters of the stripper–regenerator unit.

Fig. 5. Sensitivity of solvent losses (A) and BTEX emissions (B) in the stripper’s vent towards disturbances in lean solvent temperature, lean solvent volumetric flow
rate and contactor pressure.
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rom Fig. 4A that an increase in BTEX emission from 70% to
15% results upon increasing that temperature from 80% to
20% of the base case temperature, which is 140 ◦F. It is also
vident from the same figure that BTEX emission responds
aster to changes in rich solvent temperature in the lower region
for disturbances from −20% to 0%) than in the upper region
for disturbances from 0% to 20%). VOCs emissions on the
ther hand are responding very sluggishly towards disturbances
n both reboiler duty and rich solvent inlet temperature, but
rofoundly to disturbances in the stripping gas flow rate. This is
ade evident in Fig. 4B, where the VOCs percentage emission

raverses in an ascending manner a range from 87% to 115% for
isturbances in the stripping gas flow rate ranging from −20%
o +20%. One has to keep in mind, however, that the stripping
as used in this simulation is bled from the dry gas output of the
ontactor, which has a high concentration of VOCs. Stripping
sing air or nitrogen gas looks more appropriate in view of
hese results.

Fig. 5A and B presents effects of disturbances in three input
ariables of the contactor (i.e., solvent temperature, solvent flow
ate, and contactor pressure as shown in Table 2) on the TEG
osses and BTEX emissions from the stripper. Out of the three
ndependent variables considered, the circulation rate of the lean
olvent has the major effect on both solvent losses and BTEX
missions from the stripper. The higher the circulation rate, the
igher is the solvent losses and the lower is the BTEX emis-
ions in the stripper vent. However, with increasing solvent flow
ate, one would expect an increase in BTEX emissions rather
han a decrease. To explain this one has to keep in mind that the
TEX emission considered here is just the amount emitted in the

tripper vent. Therefore, with increasing flow rate, more BTEX
ill be allowed in the lean regenerated solvent for a fixed min-

mum specification of solvent purity. Overall, however, BTEX
missions from the total plant could increase with the solvent
ow rate. In the second place comes the contactor pressure,

hich inversely affects the solvent (TEG) losses from stripper.
emperature of the lean solvent is seen to be of marginal influ-
nce on these two response variables. However, it was shown
reviously (Fig. 3B) that solvent losses even in the contac-

T
m
i
t

able 3
NN fault diagnosis for the contactor when the net is trained using three different al

he contactor

lgorithm Severity

−0.5 (−10% Disturbance)

ater contents in dry gas
Trainoss −0.78 ± 0.019
Traincgb −0.71 ± 0.019
Trainbfg −0.77 ± 0.022

olvent losses
Trainoss −0.23 ± 0.024
Traincgb −0.02 ± 0.024
Trainbfg −0.06 ± 0.025

TEX absorbed in rich solvent
Trainoss −0.55 ± 0.017
Traincgb −0.59 ± 0.019
Trainbfg −0.46 ± 0.019
ering Journal 137 (2008) 189–197

or are only moderately sensitive to changes in lean solvent
emperature.

.2. Fault detection using ANNs

The basic objective here is to have an insight as to what
alfunctions and what levels of disturbances in these malfunc-

ions are behind abnormal plant symptoms (output), which can
e measured online. The malfunctions and symptoms selected
or the purpose of this study are, respectively, the independent
nd dependent parameters presented before in Table 2. The
atterns needed for training and testing the ANN are the Aspen-
enerated results at the prescribed disturbances from −20% to
20% in malfunction variables. All input data are made to span
normalized range from −1 to +1 to suite the transfer func-

ion selected for the hidden layer. For all cases, it was found
hat the net simulation output (testing phase) is dependent on
he initial guesses of the weights. The most probable solu-
ion was thus obtained by averaging over 100 different trials.
he results obtained using three different training algorithms,
s programmed in the Neural Network Toolbox of Matlab 6.0
trainoss, traincgb, and trainbfg) are presented in Tables 3–5.
lso, included in these tables are values of standard devia-

ions of the generated 100 observations. In each case, the net
as trained using the simulator output at −5%, +5%, −20%,

nd +20% malfunctions, whereas outputs at −10%, +10%, and
15% were used in the testing phase. This means that, depend-

ng on the respective case, the input training matrix (p) involved
our times the number of independent variables involved in that
ase. For example, in the case of the absorber 24 input data
oints were involved in the training set. ANN simulations were
erformed with an error goal of 1 × 10−7 and a maximum of
03 epochs.

Regarding the contactor performance, the three training algo-
ithms generally over-predict the actual level of malfunctions.

his is evident in Table 3, which also shows a good agree-
ent among the three training algorithms. Single malfunctions

n each of the independent variables considered for the contac-
or are successfully detected by the ANN. The net is shown to

gorithms on data representing −5%, +5%, −20%, and +20% disturbances for

+0.5 (+10% Disturbance) +0.75 (+15% Disturbance)

0.65 ± 0.017 0.86 ± 0.017
0.62 ± 0.020 0.85 ± 0.021
0.66 ± 0.023 0.87 ± 0.022

0.68 ± 0.018 0.82 ± 0.017
0.65 ± 0.021 0.82 ± 0.019
0.66 ± 0.019 0.85 ± 0.021

0.50 ± 0.014 0.64 ± 0.022
0.48 ± 0.016 0.61 ± 0.024
0.48 ± 0.023 0.67 ± 0.025
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Table 4
ANN fault diagnosis for the stripper when the net is trained using three different algorithms on data representing −5%, +5%, −20%, and +20% disturbances for the
contactor

Algorithm Severity

−0.5 (−10% Disturbance) +0.5 (+10% Disturbance) +0.75 (+15% Disturbance)

TEG in stripper’s vent
Trainoss −0.56 ± 0.022 0.54 ± 0.027 0.76 ± 0.022
Traincgb −0.55 ± 0.023 0.52 ± 0.028 0.76 ± 0.022
Trainbfg −0.54 ± 0.025 0.59 ± 0.03 0.77 ± 0.023

BTEX in stripper’s vent
Trainoss −0.57 ± 0.013 0.56 ± 0.022 0.78 ± 0.016
Traincgb −0.59 ± 0.015 0.57 ± 0.021 0.80 ± 0.015
Trainbfg −0.57 ± 0.013 0.61 ± 0.025 0.75 ± 0.016

VOCS (C1–C8) in stripper’s vent
Trainoss −0.66 ± 0.012 0.77 ± 0.019 0.91 ± 0.009
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Traincgb −0.69 ± 0.015
Trainbfg −0.67 ± 0.014

e able to recognize the faults in all of theses cases. Results
n Table 3 that are associated with trainoss algorithm are shown
lotted in Fig. 6A. The ideal situation is for all points to coincide
ith the diagonal line implying that the predicted fault severity
atches that imposed one. Most importantly, the best ANN per-

ormance is shown in Fig. 6A to be for the amount of BTEX
bsorbed in the rich solvent. This implies that on-line monitor-
ng of the BTEX concentrations in the rich solvent (exiting the
ontactor) can reflect the disturbance severity levels in the input
ariables considered. This is an interesting result in view of the
xtreme importance of monitoring BTEX levels in the rich sol-
ent, which directly affects BTEX emission levels from later
tages.

Table 4 contains results of the ANN fault diagnosis of the
tripper–regenerator unit. Except for the last symptom (VOCs
mission), the ANN is handling faults in a comparable manner
o that in the contactor. Again, the three algorithms give com-

arable results. For the first two symptoms (TEG emissions and
TEX emissions in vents), the ANN diagnosis of the faults is

n good agreement of the imposed fault. Fig. 6B shows results
ssociated with trainoss algorithm, where the previous argument

t
o
r
m

able 5
NN fault diagnosis for the overall plant when the net is trained using three differen

or the contactor

lgorithm Severity

−0.5 (−10% Disturbance)

EG in stripper’s vent
Trainoss −0.59 ± 0.009
Traincgb −0.59 ± 0.010
Trainbfg −0.60 ± 0.011

TEX in stripper’s vent
Trainoss −0.53 ± 0.007
Traincgb −0.53 ± 0.006
Trainbfg −0.53 ± 0.006

3: VOCS (C1–C8) in stripper’s vent
Trainoss −0.53 ± 0.007
Traincgb −0.53 ± 0.006
Trainbfg −0.53 ± 0.006
0.76 ± 0.022 0.91 ± 0.012
0.75 ± 0.022 0.89 ± 0.012

ecomes clearer. The symptom that is not as well predicted is the
OCs emission. This could be the case because VOCs emission
as found to be sensitive to one independent variable but not

or the others (Fig. 4B).
Results presented above (Tables 3 and 4) are for the con-

actor and the stripper where both malfunctions and symptoms
elong to the same piece of equipment. In Table 5, results are
resented for the overall plant where malfunctions represent dis-
urbances in some input variables in the plant and symptoms
epresent responses elsewhere in the plant. The ANN precisely
imics the imposed disturbance level in the input malfunctions

onsidered. This is evident from the close agreement between
mposed severity levels (malfunctions) and the ANN predictions
Table 5). The low values of standard deviations in the ANN pre-
ictions (remember that ANN output represents an average of
00 trials) point to the robustness of training algorithms and to
he minimal effects of initial guesses of weight and biases of

he net. This is also made clearer in Fig. 6C which shows a plot
f results corresponding to the trainoss algorithm. The ANN
eflects the imposed disturbances in the three severity levels of
alfunctions.

t algorithms on data representing −5%, +5%, −20%, and +20% disturbances

+0.5 (+10% Disturbance) +0.75 (+15% Disturbance)

0.48 ± 0.010 (0.28–0.71) 0.79 ± 0.009
0.48 ± 0.009 0.80 ± 0.008
0.49 ± 0.009 0.80 ± 0.008

0.51 ± 0.007 0.77 ± 0.007
0.50 ± 0.007 0.76 ± 0.008
0.51 ± 0.007 0.77 ± 0.009

0.51 ± 0.006 0.78 ± 0.007
0.50 ± 0.005 0.78 ± 0.007
0.52 ± 0.006 0.77 ± 0.007
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ig. 6. Faults recall by the ANN trained with “trainoss” algorithm at fault levels
lant).

. Conclusions

A typical natural gas dehydration plant, which employs
riethylene glycol (TEG) as the dehydrating agent, has been
imulated using a steady state flowsheet simulator (Aspen Plus).
he base case operating conditions are taken to resemble field
ata from one of the existing dehydration units operating in the
nited Arab Emirates (UAE). The dew point (water contents)
f the dry gas issuing from the contactor is mostly responsive
o disturbances in the wet gas flow rate and to a lesser extent to
ean solvent circulation rate and water contents in the processed
as. TEG losses are mostly sensitive to the contactor pressure.
he temperature of the inlet rich solvent and the stripping gas
ow rate profoundly affects BTEX and VOCs emissions, respec-

ively. The most important variable in deciding solvent losses
nd BTEX emissions from the overall plant is shown to be the

irculation rate of the solvent. The higher the circulation rate,
he higher are the solvent losses and the BTEX emissions. ANN
uccessfully reflects the disturbance severity levels in the input
ariables considered for the contactor. In particular, abnormal
5%, +5%, +20%, and −20% (A: contactor, B: stripper–regenerator, C: overall

evels of BTEX concentrations in the rich solvent (exiting the
ontactor) are shown to precisely indicate the severity levels
n these input variables. Faults in the stripper–regenerator unit
ave been perfectly predicted by the ANN for two symptoms
TEG emissions and BTEX emissions in vents) and to a lesser
xtent for faults in VOCs emissions. The best ANN prediction is
btained for the overall plant where the ANN perfectly mimics
he imposed disturbances for the three severity levels of imposed

alfunctions for all symptoms considered.
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